
News and Comment

 Thank you to all who have volunteered to help beta test DB/C DX 14.0.
And thanks for your patience. We have had a few customers doing alpha
testing, and based on their feedback we've added a few features and changed

some others. We actually do expect to begin beta testing in September.

 This month's newsletter article describes an example of a Java program

that connects with DB/C FS server to do file-oriented I/O (not SQL). The
example is also useful for .NET programmers because of the strong similarity
between the DB/C FS Java File I/O API and the DB/C FS .NET File I/O APIs.

 If you have any suggestions for other sample programs that might be
useful to you, let me know and maybe we can turn your suggestion into a

future newsletter.

don.wills@dbcsoftware.com

Sample Java Program for DB/C FS File I/O

 There are two different access methods for reading and writing data
with DB/C FS. The SQL access method, which comes in the forms of ODBC and

JDBC, is the method that the majority of DB/C FS users are using. The
lesser used DB/C FS access method is the file I/O access method. This access
method requires programming to use and comes in the form of C source code,

a Java library, and a .NET library (or assembly).

 The example program, Demo.java, is available at the www.dbcsoftware.com

web site in the Sample Code area. This is a standalone Java program that
will access a file managed by the DB/C FS server. The access is via TCP/IP
and the Java File I/O class library which is named fs.jar in the DB/C FS

distribution. To compile the Demo.java program, you will need a Java SDK
or other Java compiler environment, as well as the fs.jar file. To run the

Demo.java program, you will need to have the DB/C FS server set up and
running on a computer that is accessible to the computer that will be
used to run the Demo.java program.

 The program assumes that an empty file named vendor.txt along with
three index files is available in the default directory of the DB/C FS
server and that the data and index files were created by running these

commands:

 create vendor -d

 index vendor 1-6
 index vendor vendor2 7-26 1-6
 aimdex vendor 7-26 94-133

Note that the vendor.txt file is a DATA type file which means that the
record delimiters are linefeed characters only.

 Exception handling is provided in the actual Demo.java program, but
will be ignored in the following excerpts from the source code. All of
the Java classes for DB/C FS file I/O are in the com.dbcswc.fs package.

 The Connection class is the anchor for all operations. The first
thing we can do is use the static method called getgreeting to see

if the DB/C FS server is running. Here is the code to do that:

 String server = "localhost";
 System.out.println(Connection.getgreeting(server));

If DB/C FS is running and can be found, then a message such as
"DB/C FS 4.0" is displayed.

 A Connection is created to make a persistent connection to the DB/C FS
server. Note that this is actually a "log on" to the server. The first
parameter of the constructor is the server, the second is the database, the

third is the user name, and the last is the user password. Here is the code:

 Connection connection = new Connection(server, "demodb",

 "testuser", "testpass");

 Records will be read and written using a buffer. In our example, the
vendor record will be fixed length of 148 characters. We need to declare

the record buffer like this:

 char[] buffer = new char[148];

 Next we declare the 3 File instances through which access will occur.
The first index is an ISAM index on the vendor number field which is in
positions 1-6 of the record. The second index is an ISAM index on the

vendor name, vendor number fields which are positions 7-26, 1-6. The third
index is an AIM index on the vendor name and vendor contact which are in

positions 7-26 and 94-133. The methods to set the various access parameters
are pretty straightforward. Here is that code:

 File vendor1 = new File(connection);
 vendor1.setindexfile("vendor");
 vendor1.setoptions(File.DATA | File.IFILEOPEN);

 vendor1.setrecsize(148);
 vendor1.setrecordbuffer(buffer);

 File vendor2 = new File(connection);
 vendor2.setindexfile("vendor2");
 vendor2.setoptions(File.DATA | File.IFILEOPEN);

 vendor2.setrecsize(148);
 vendor2.setrecordbuffer(buffer);

 File vendor3 = new File(connection);
 vendor3.setindexfile("vendor");
 vendor3.setoptions(File.DATA | File.AFILEOPEN);

 vendor3.setrecsize(148);
 vendor3.setrecordbuffer(buffer);

 The files are opened using this code:

 vendor1.open();
 vendor2.open();

 vendor3.open();

 Records are then written to the data file and indexed inserts are

done, just like in DATABUS. Here is the code to add one record:

 String record = "000101Best Widget Company 300 Main Street " +
 " South Park CO80440 " +

 " Kenny McCormick 71" +
 "9-555-1212 ";

 record.getChars(0, 148, buffer, 0);
 vendor1.writekey(148, "000101");
 vendor2.insertkey("Best Widget Company 000101");

 vendor3.insertkeys(148);

The first two lines of this code just move the record into the record

buffer. The writekey method writes the record and the key. The insertkey
and insertkeys methods insert keys into the second ISAM index and the
AIM index, respectively.

 The following code reads records in key sequential order using
the vendor name index and displays each company name on the console:

 vendor2.readkey(" ");
 while (true) {
 int n1 = vendor2.readkeynext();

 if (n1 < 0) break;

 System.out.println(String.valueOf(buffer, 6, 20));
 }

 The following code uses the AIM index to retrieve all of the

records that contain "mick" in the vendor contact field:

 int n1 = vendor3.readaim("02Fmick");

 while (n1 > 0) {
 System.out.println(String.valueOf(buffer, 6, 20));
 n1 = vendor3.readkeynext();i

 }

 Finally, this code closes the files and disconnects from the server:

 vendor1.close();
 vendor2.close();
 vendor3.close();

 connection.disconnect();

 That's all there is to it! Happy programming.

DB/C DX Class Schedule

 Class: DB/C DX Fundamentals

 Date: November, 2005
 Location: Woodridge, Illinois

For information, send email to admin@dbcsoftware.com.

Subscribing to the DB/C Newsletter

If you don't already have the DB/C Newsletter delivered to your email
address and would like to have it emailed to you monthly, just send an
email message to 'dbcnews-subscribe@dbcsoftware.com'. The newsletter will

be delivered to the email address from which the message was sent.

