
DB/C Newsletter
January 2006

News and Comment

 There continue to be many users of the DB/C programming language (and of DATABUS in
general including our competitors). Outside observers would probably wonder why a 30 year
old language continues to be used to develop mission critical business-oriented applications.
There are several reasons it continues to prosper. One of those reasons has to do with funda-
mental technical design decisions made by the original designers of the language. This month's
article deals with some of those concepts.

 Disclaimer - as it's an opinion piece, this month's article has my byline. I'm not an expert in
Ruby or Rails. The information in the article is the result a few weeks of my learning about
Ruby and Rails.

don.wills@dbcsoftware.com

What About Ruby?
by Don Wills

 In my opinion, Ruby is not a major advancement in the world of programming languages.
It has some interesting concepts, but I believe when the hype dies down, it will become just
another programming language in the PHP/Pearl/Python family of scripting languages.

 The hype generally goes something like this - using Rails, you can create typical web-based
CRUD (create/retrieve/update/delete) data base maintenance programs in one tenth the time
when compared with X (name your own X). Another commonly hyped point is that it takes many
fewer lines of code and/or keystrokes to express the same program when compared with other
languages. Actually, these two claims are generally true, but they aren't really important to most
commercial software developers.

 Let's examine the first claim, that using Ruby on Rails, you can create typical CRUD
programs quickly. Yes, but that's a feature of Rails, not Ruby. It is true that Rails uses some
neat Ruby features to do its work, but a tool like Rails can be built for many programming
languages. Rails is just another snazzy program generator for building web apps. Besides,
today most professional developers using other languages are not building CRUD programs
from scratch - they are using program generators or other automated tools to do the grunt work
for them.

 One of the best features of Rails is Active Record. It is yet another SQL based object-
relational mapping (ORM) mechanism. Active Record is different than other ORMs in that it is
generally stateless. This means that connection pooling and other performance improvement
methods do not impact the programmer's use or design of programs. That is a good thing. But
as noted above, there is nothing unique about Rails and Active Record - Active Record can be
(and is being) developed for several other programming languages.

 There are several other reasons why Ruby isn't this next big thing. Here are a few -

 Performance is an issue - execution of Ruby is interpreted from the abstract syntax tree of its
source. Compilation simply doesn't happen, either to bytecodes or to native executable code.

 Ruby, like Python, Pearl and PHP, is actually older than Java. These languages have had
plenty of time to gain traction, but they have not attained the status of younger languages like
Java and C#.

 Ruby has been lauded as simple and clean. In my opinion, that's just not true. In designing
new things, I've always followed the Principle of Least Astonishment. That means that one can
generally guess what an operator, verb or syntactic element does just by looking at it. Ruby
fails in this regard. It is true that Ruby is cleaner than the other P languages, but that's not
saying much.

 Ruby isn't useful for server-side or desktop (GUI) programming.

 Ruby doesn't support fixed decimal arithmetic or Unicode character values.

 Ruby is dynamically typed. Some people like this; I don't. A dynamically typed language
allows a variable's type to be changed at will. At one point the variable may be an integer type,
and just by assigning a string to it, it changes to a string type. Errors caused by invalid use of
dynamic typing cannot be found by the compiler. They are found at run time (hopefully during
testing!).

 Ruby has poor IDE support. One of the advantages hyped for Ruby is that you need to type
fewer keystrokes. That's true, but with Eclipse's Java code completion or Visual Studio's
Intellisense, that's irrelevant.

 As a student of programming languages, I'm always interested in learning new languages.
Ruby has some useful features that will be copied in other programming languages. But Ruby
will not be the next big thing in the world of programming languages.

DB/C DX Class Schedule

 Class:

 DB/C DX Fundamentals

 Date:

 June, 2006

 Location:
 Woodridge, Illinois

For information, send email to admin@dbcsoftware.com.

